Распределение частот

Содержание:

Anonim

Частотное распределение - это способ, которым набор данных классифицируется на различные взаимоисключающие группы. То есть, если часть данных принадлежит одной группе, она не может принадлежать другой.

Другими словами, частотное распределение - это способ, которым серия наблюдений организована в разные группы, обычно по возрастанию или убыванию.

Чтобы увидеть это на примере, группу людей можно сгруппировать по возрасту в диапазоне от 18 до 25 лет, от 26 до 40 лет, от 41 до 60 лет и от 61 года и старше.

Следует отметить, что частотное распределение обычно выполняется относительно статистической выборки, хотя оно также может быть основано на генеральной совокупности.

Другой аспект, который следует учитывать, заключается в том, что группы, в которых распределяются данные, могут быть определенными числами, например, если переменная - это количество раз, когда человек проходил оценку, которое может быть 1, 2 или 3. Хотя, как мы видели строки выше, возможно, вы работаете с интервалами.

Типы частотных распределений

Типы частотных распределений следующие:

  • Абсолютная частота (fi): Это количество наблюдений, принадлежащих каждой группе. Кроме того, это интерпретируется как количество повторений события. Например, если продолжить предыдущий случай, это может быть группа из 100 человек, 20 из которых находятся в возрасте от 26 до 40 лет.
  • Относительная частота (привет): Он рассчитывается путем деления абсолютной частоты на количество данных, например, возвращаясь к ситуации, поднятой строками выше, 20/100 равно 0,2 или 20%.
  • Суммарная абсолютная частота (Fi): Это результат сложения абсолютных частот класса или группы выборки (или совокупности) с предыдущей или предыдущей. Например, чтобы вычислить накопленную абсолютную частоту третьей группы, добавляются абсолютные частоты первой, второй и третьей групп.
  • Накопленная относительная частота (Hi): Это результат сложения относительных частот, как мы объяснили для накопленной абсолютной частоты. Например, для вычисления совокупной относительной частоты четвертой группы относительные частоты первой, второй, третьей и четвертой групп складываются.

Пример частотного распределения

Давайте посмотрим на пример таблицы частотного распределения:

фиПриветFiПривет
(18-25)350,35350,35
(26-40)200,2550,55
(41-60)270,27820,82
60 или больше180,181001