Уровни значимости - что это такое, определение и понятие

Уровни значимости являются дополнением к доверительному интервалу распределения и используются для проверки нулевой гипотезы (H0) в тесте статистического вывода.

Другими словами, уровни значимости - это вероятности, которые мы оставляем за пределами доверительного интервала распределения, и помогают нам определить, находится ли тестовая статистика в зоне отклонения или нет.

Связь между уровнем значимости и уровнем уверенности

Конечно, все мы слышали, как кто-то спрашивал, какое значение мы должны присвоить альфе распределения или с какой степенью уверенности мы вычисляем интервал математически (1-альфа). Ответ обычно всегда 1%, 5% или 10% для альфа или 99%, 95% и 90% для уровня достоверности.

Важно четко понимать следующее:

  • 1%, 5%, 10% = альфа => Уровни значимости.
  • 99%, 95%, 90% = (1-альфа) => Доверительный интервал.

Доверительные интервалы и уровни значимости дополняют друг друга, поскольку их сумма представляет собой площадь функции плотности. Потом,

Мы уже знаем, что площадь функции плотности равна 1. Математически мы можем решить этот интеграл:

Представление уровня значимости

В этом случае t-распределение Стьюдента с 16 степенями свободы использовалось, чтобы показать, какие области функции относятся к уровням значимости. Проценты (2,5%, 2,5% и 95%) соответствуют площади под функцией плотности. Поскольку это распределение имеет два хвоста, уровень значимости делится пополам, поэтому 2,5% + 2,5% = 5%. Критическое значение этого распределения с 16 степенями свободы и 5% в качестве уровня значимости составляет 2,11991 в каждом хвосте.

2,5% + 2,5% + 95% = 1%

Универсальный

Мы называем уровни значимости универсальными, потому что эти уровни известны и используются во всех статистических тестах. Очень необычно найти уровень значимости 20% или 35%, если это не явное условие проверки.

Это правда, что уровни 1% и 5% более популярны, чем уровень 10%, но это из соображений точности. Лучше дать результат 1 раз из 100 (1/100 = 0,01 = 1%) или 5 раз из 100 (5/100 = 0,05 = 5%), чем 10 раз из 100 (10/100 = 0,1 = 10%), верно?

Также уровни значимости называются процентилем, например 1% процентилем или 5% процентилем. Эта номенклатура широко используется для расчета показателя стоимости риска (VaR).

Произвольные и непроизвольные

Уровни значимости могут быть произвольными, но не произвольными. Произвольные - это значения, которые мы выбираем априори (до) зная характеристики эксперимента. В этом случае это будет до расчета статистики теста. Непроизвольные - это те, которые получены в результате эксперимента. В данном случае это p-значение, потому что оно зависит от значения, взятого статистикой теста. Оба зависят от распределения, которому следуют данные.

Популярные посты

Реформа труда 2012

В эти дни мы не перестаем слышать о реформе труда во всех СМИ, но ... можно ли сказать, о чем она? Если мы обратимся к заголовкам новостей, то увидим, что нынешнее правительство использует трудовую реформу для облегчения увольнений; а если мы перейдем к другим новостям, то увидим, что виноват предыдущийПодробнее…

Козерог вырос на 3,5% в очень важных уровнях поддержки

Когда все выглядит фатально, когда кажется, что никто нас не выводит из этого кризиса и что Испания находится в центре внимания всего мира, оказывается, что испанский фондовый индекс растет на 3,5% только при очень важных уровнях поддержки, в то время как другие мировые индексы остаются на прежнем уровне и даже сПодробнее…

Вторые выборы в Греции - это «референдум» по евро

Встреча греческих лидеров завершилась объявлением новых выборов в Греции 17 июня, на которых премьер-министром на данный момент назначен судья Верховного суда Греции (Панайотис Пикрамменос). Парадокс в том, что 80% греков хотят оставаться в евро, но вПодробнее…

Европейская палата одобрила ложно названный налог Тобина

В настоящее время ведутся разговоры о введении налога на финансовые операции, неправильно названного налогом Тобина. Европарламент одобрил его на прошлой неделе. Так почему это не применимо? Это потому, что Европейский парламент не имеет полномочий по принятию решенийПодробнее…